New Law of Physics Could Explain Quantum Mysteries

Since the early days of quantum mechanics, scientists have been trying to understand the many strange implications of the theory: superpositions, wave-particle duality, and the observer’s role in measurements, to name a few. Now, a new proposed law of physics that describes the geometry of physical reality on the cosmological scale might help answer some of these questions. Plus, the new law could give some clues about the role of gravity in quantum physics, possibly pointing the way to a unified theory of physics.

Tim Palmer, a weather and climate researcher at the European Centre for Medium-Range Weather Forecasts in Reading, UK, has been interested in the idea of a new geometric framework for quantum theory for a long time. Palmer’s doctoral thesis was in general relativity theory at Oxford University in the late 1970s. His studies convinced him that a successful quantum theory of gravity requires some geometric generalization of quantum theory, but at the time he was unsure what specific form this generalization should take. Over the years, Palmer’s professional research moved away from this area of theoretical physics, and he is now one of the world’s experts on the predictability of climate, a subject which has considerable input from nonlinear dynamical systems theory. In a return to his original quest for a realistic geometric quantum theory, Palmer has applied geometric thinking inspired by such dynamical systems theory to propose the new law, called the Invariant Set Postulate, described in a recent issue of the Proceedings of the Royal Society A.

As Palmer explained to PhysOrg.com, the Invariant Set Postulate is proposed as a new geometric framework for understanding the basic foundations of . "Crucially, the framework allows a differentiation between states of physical reality and physical 'unreality,'" he said.

The theory suggests the existence of a state space (the set of all possible states of the universe), within which a smaller (fractal) subset of state space is embedded. This subset is dynamically invariant in the sense that states which belong on this subset will always belong to it, and have always belonged to it. States of physical reality are those, and only those, which belong to this invariant subset of state space; all other points in state space are considered “unreal.” Such points of unreality might correspond to states of the universe in which counterfactual measurements are performed in order to answer questions such as “what would the spin of the electron have been, had my measuring apparatus been oriented this way, instead of that way?” Because of the Invariant Set Postulate, such questions have no definite answer, consistent with the earlier and rather mysterious notion of “complementarity” introduced by Niels Bohr.

According to Palmer, quantum mechanics is not itself sufficiently complete to determine whether a point in state space lies on the invariant set, and indeed neither is any algorithmic extension to quantum theory. As Palmer explains, in quantum theory, states associated with these points of unreality can only be described by abstract mathematical expressions which have the algebraic form of probability but without any underlying sample space. It is this which gives quantum theory its rather abstract mathematical form.

As well as being able to provide an understanding of the notion of complementarity, the two-fold ontological nature of state space can also be used to explain one of the long-standing mysteries of quantum theory: superpositions. According to the Invariant Set Postulate, the reason that Schrodinger’s cat seems to be both alive and dead simultaneously is not because it is, in reality, in two states at once, but rather because quantum mechanics is ignorant of the intricate structure of the invariant set which determines the notion of reality. Whichever point (alive or dead) lies on the invariant set, that one is real. The notion of quantum coherence, which is reflected in the concept of superposition, is, rather, carried by the self-similar geometry of the invariant set.

With superposition seemingly resolved from the perspective of the Invariant Set Postulate, other aspects of quantum mechanics can also be explained. For instance, if states are not in superpositions, then making a measurement on the quantum system does not “collapse the state” of the system. By contrast, in Palmer’s framework, a measurement merely describes a specific quasi-stationary aspect of the geometry of the invariant set, which in turn also informs us humans about the invariant set.

The Invariant Set Postulate appears to reconcile Einstein’s view that quantum mechanics is incomplete, with the Copenhagen interpretation that the observer plays a vital role in defining the very concept of reality. Hence, consistent with Einstein’s view, quantum theory is incomplete since it is blind to the intricate structure of the invariant set. Yet consistent with the Copenhagen interpretation, the invariant set is in part characterized by the experiments that humans perform on it, which is to say that experimenters do indeed play a key role in defining states of physical reality.

Yet another quantum mechanical concept that the Invariant Set Postulate may resolve is wave-particle duality. In the two-slit experiment, a world where particles travel to areas of destructive interference simply does not lie on the invariant set, and therefore does not correspond to a state of physical reality.

Among the remaining mysteries of quantum mechanics that the Invariant Set Postulate might help explain is the role of gravity in quantum physics. As Palmer notes, gravity has sometimes been considered as an objective mechanism for the collapse of a superposed state. However, since the Invariant Set Postulate does not require superposed states, it does not require a collapse mechanism. Rather, Palmer suggests that gravity plays a key role in defining the state space geometry of the invariant set. This idea fits with Einstein’s view that gravity is a manifestation of geometry. As such, Palmer suggests, unifying the concepts of non-Euclidean causal space-time geometry and the fractal atemporal geometry of state space could lead to the long-sought theory of “quantum gravity.” Such a theory would be very different from previous approaches, which attempt to quantize gravity within the framework of standard quantum theory.

Palmer’s paper is an exploratory analysis of this Invariant Set Postulate, and he now hopes to develop his ideas into a rigorous physical theory. Just as global space-time geometric methods transformed our understanding of classical gravitational physics in the 1960s, Palmer hopes that the introduction of global state space geometric methods could give scientists a deeper understanding of quantum gravitational physics. And, as suggested above, combining these two types of geometry might help lead to the long-sought unified theory of physics.

More information: T.N. Palmer. “The Invariant Set Postulate: a new geometric framework for the foundations of and the role played by gravity.” A. doi:10.1098/rspa.2009.0080

PhysOrg

Vitamin D May Be Heart Protective


Vitamin D deficiency may exacerbate the excess heart disease risk that people with type 2 diabetes face, a new study in the Aug. 25 Circulation suggests. In lab tests, researchers demonstrate that immune cells with very low vitamin D levels turn into soggy, cholesterol-filled baggage that can become building blocks of arterial plaques.

Carlos Bernal-Mizrachi, an endocrinologist at Washington University School of Medicine in St. Louis, and his colleagues found that people with diabetes seem more susceptible than nondiabetics to the negative cardiovascular effects attributable to a vitamin D shortage. Larger studies may clarify whether the shortage’s effects extend to nondiabetics, Bernal-Mizrachi says.

Previous studies have tied vitamin D deficiency to cardiovascular disease risk, but the cell biology underpinning this link has been gauzy. “Now we’re figuring out the mechanisms behind how this works,” Bernal-Mizrachi says.

The team tested blood samples from 76 obese people, average age 55, who had high blood pressure, type 2 diabetes and low vitamin D levels. As a comparison, the scientists tested blood from 15 similar people who had normal vitamin D levels and another 45 people with normal blood pressure.

From these blood samples, the scientists cultured immune cells called macrophages and exposed the cells to an oxidized form of LDL cholesterol (the bad kind). Because macrophages are immune cleanup crews that normally snag and engulf LDL molecules, this test mimicked the goings-on in the walls of a blood vessel.

But in these tests, macrophages from the type 2 diabetes patients were more likely to absorb LDL cholesterol in excess when they were cultured without vitamin D than when they were bathed in vitamin D.

Macrophages low on vitamin D become indiscriminate devourers, gobbling up too much LDL and transforming into foam cells, core constituents of arterial plaques, Bernal-Mizrachi says.

Foam cells cluster with other debris along the sides of blood vessels, eventually forming a fibrous, collagen cap. If that cap becomes unstable, the plaque ruptures and a blood clot forms — a recipe for a heart attack or stroke.

Macrophages from people without diabetes were much less affected by the presence of vitamin D in this study.

In further experiments, the researchers demonstrated that vitamin D protects the endoplasmic reticulum — an organelle that governs a host of cell functions — from stress in diabetic people. Less stress means the macrophages will display fewer receptor proteins that scavenge oxidized LDL cholesterol. “Vitamin D regulates these receptors,” Bernal-Mizrachi says, and that limits how much LDL cholesterol the macrophage can gobble up.

“The central observation here is that, with vitamin D deficiency, diabetic people have more endoplasmic reticulum stress,” says Alan Tall, an internist at Columbia University. That stress results in the snaring of more LDL cholesterol.

Bernal-Mizrachi and his colleagues also show that this stress triggers an inflammatory response. In an artery that has already formed plaques, this can be deadly, says Tall, because some inflammatory proteins degrade collagen. “Inflammation is linked to cap breakdown,” he says.

Until more data are available, people with diabetes might think about their vitamin D levels, Bernal-Mizrachi says. Vitamin D can be stored up from supplements and short sun exposures, he says, but not getting too much is “a matter of moderation.”

Science News

Casper the Quantum Ghost


A strange kind of imaging relies on quantum mechanics.

Casper just got upgraded from the “Friendly Ghost” to the “Quantum Ghost.” In a spooky new study, researchers found telltale signs of quantum weirdness lurking in an optical trick called ghost imaging. Discovered over a decade ago, ghost imaging allows researchers to create an image of something using light that never bounced off the actual object. The new work adds to the debate over whether ghost imaging is quantum in nature, or if normal, everyday physics can explain the phenomenon.

To look for evidence of quantum behavior, Scottish and Austrian researchers designed a system to create a ghost image of an appropriately ghoulish object (see image above). In the experiment, an ultraviolet laser beam diverged into two beams inside a special crystal. One beam bounced off the image of a ghost, displayed on a small television screen, before going into a detector. The other beam either went straight to a detector or first bounced off a hologram that was not ghost-shaped but had contrasting light and dark areas. Data from the two detectors were combined to produce the final image.

When the hologram was included in the experimental setup, the clarity of the ghost image improved, says study coauthor Miles Padgett of the University of Glasgow in Scotland. The team concludes that photons in the two streams were intimately linked, a quantum property known as entanglement. This “spooky action at a distance” allowed the contrast information from the hologram to be applied specifically to the lines of the ghost. The results are “the clearest demonstration that at least some forms of ghost imaging are quantum,” Padgett says. “That’s not to say that all systems are quantum, but ours is.”

Science News

'Glow-in-the-dark' red blood cells made from human stem cells


Victorian stem cell scientists from Monash University have modified a human embryonic stem cell (hESC) line to glow red when the stem cells become red blood cells.

The modified hESC line, ErythRED, represents a major step forward to the eventual aim of generating mature, fully functional red blood cells from human embryonic stem cells.

The research, conducted by a team led by Professors Andrew Elefanty and Ed Stanley at the Monash Immunology and Stem Cell Laboratories that included scientists at the Murdoch Children's Research Institute, was published in today's issue of the prestigious journal, Nature Methods.

The work, funded by the Australian Stem Cell Centre (ASCC), will help scientists to track the differentiation of embryonic stem cells into red blood cells.

Whilst hESCs have the potential to turn into any cell type in the body, it remains a scientific challenge to reliably turn these stem cells into specific cell types such as red blood cells. The development of the ErythRED embryonic stem cell line, which fluoresces red when haemoglobin genes are switched on, is an important development that will help researchers to optimise the conditions that generate these cells.

Professor Joe Sambrook, Scientific Director of the ASCC said that "The elegant work of the Elefanty-Stanley group unlocks the entrance to the long sought and elusive differentiation pathway that leads to expression of adult haemoglobin genes"

"Not only will the ErythRED cell line lead to more efficient creation of red blood cells from human embryonic stem cells, but these cells are a crucial tool for monitoring the behaviour of the cells when transplanted into animal models" said Professor Andrew Elefanty.

Source: Monash University - More Info

Scientists find previously unknown deep-sea species


Newly discovered deep-sea worms launch luminous green bombs that may distract a predator, a study in the Aug. 21 Science reports.

Remotely operated vehicles found seven new species of worms at depths around 1,900 meters and deeper off the coasts of California, Oregon and the Philippines. Cameras caught the worms, some of which were several inches long, swimming forward and backward above the ocean floor, propelled by wriggling fans of bristles.

Cameras also caught a glimpse of small bulbous packets near some of the species’ heads. And researchers captured the worms to study their behavior. When prodded in a dark laboratory, the worms released one or two of these spheres, which burst into bright green light for seconds before fading. This trick earned the packet-carrying worms the nickname “green bombers.”

Once one bomb is released, the worm slowly grows another in the same place, says study coauthor Karen Osborn of Scripps Institution of Oceanography in La Jolla, Calif. “It takes them awhile to regenerate, so they’re stingy with them.” The seven discovered species make up a new genus, named Swima, and five of the seven make bombs, the study found.

Other animals, including some brittle stars and squids, use bioluminescence to distract predators. The worms’ glowing bombs may serve to distract a hungry fish, Osborn says. Because the bright lights from the remotely operated vehicles prevented the researchers from seeing the bombs’ glow in the deep ocean and no predators were seen attacking the worms, the scientists don’t yet know for sure why the worms deploy the bomb in the wild.

Cataloguing the species that live in the deep sea and understanding how they behave is important because diverse creatures keep an ecosystem stable, Osborn says. “Every time we go down, we find new species,” she says. “It’s important to learn about the biodiversity down there before we lose it.”

Science News

Scientists propose lab-grade black holes


One day, scientists may create the ultimate tempest in a teapot — an artificial black hole in a millimeter-long gadget. Such laboratory-grade black holes may illuminate enigmatic physical properties of their wild galactic counterparts, all from the safety of a lab bench, a study to appear in Physical Review Letters suggests.

“For black holes, we just don’t understand the physics at all,” says physicist William Unruh of the University of British Columbia in Vancouver, Canada, who was not involved in the new study. The prospect of conducting actual experiments on systems resembling black holes is exciting, he says. “Belief is not the same as doing an experiment.”

Mysterious black holes were originally thought to gobble up everything around them, including light (hence the name). But in the 1970s, British physicist Stephen Hawking predicted that because of quantum effects, these voracious monsters should emit photons. Right on the brink of the black hole, these photons “are so energetic that they go beyond what we understand,” says study coauthor Miles Blencowe of Dartmouth College in Hanover, N.H. Such emitted photons, known as Hawking radiation, have not yet been caught in the wild, nor have they been simulated in an experiment, leaving knowledge of their basic properties — and existence — in limbo.

In the new study, the researchers propose using a series of tiny, cold superconducting devices called SQUIDs in a linear, train-track–shaped arrangement to create a black hole analog. “But unlike a black hole out in space, we know the physics of this system,” says study coauthor Paul Nation, also of Dartmouth College.

Particles inside a black hole’s boundary, called the horizon, get sucked into the depths of the black hole, while particles outside the horizon can escape. Blencowe likens the horizon to a steep waterfall, where a fish above the drop can swim at normal speeds, but once a fish hits the fast-flowing water in the waterfall, it is swept down into the water below.

Similarly, the proposed system also creates a horizon, in the form of an electromagnetic wave that moves across the device in response to a magnetic pulse. Photons behind this horizon are trapped, while photons ahead of it move normally. By detecting and studying the photons that emerge from the device, researchers hope to have a better idea of what happens to particles near the edge of a black hole, both those that escape and those that are pulled in.

Changing the strength of the horizon-creating magnetic pulse may create conditions that fluctuate, making a system that simulates “shaking spacetime,” Nation says. Watching how photons behave in such a quantum system may answer some basic questions about the quantum nature of gravity, he says.

Building the new system has many challenges. “All of these experiments have a long way to go before they’ll deliver their promise,” comments Unruh, who has proposed a black hole analog that relies on sound waves.

Nation says that stringing together the 4,000 or so SQUIDs needed to create the artificial black hole would be a difficult endeavor. The largest string built so far is only 400 units long. Another hurdle to creating this system is designing a detector sensitive enough to catch single photons that would have a frequency much lower than that of visible light. “People are close to making a detector, but technically, it hasn’t been done,” says Nation.

Science News

Solar System Finite Age ?


The fact that radioactive isotopes are present in the materials from Earth, the Moon, and meteorites strongly suggests that our Solar System has a finite age. Can this age be calculated? Potential minimum and maximum ages for the formation of our Solar System may be obtained through an analysis of radioactive isotope ratios, parent:daughter ratios, and missing radioactive isotopes. For example, uranium-238 has a half-life of 4.47 billion years. Observing the limitations mentioned in the article, Radioisotope Age: Part II, which does not permit age calculations beyond 7-10 half-lives, we may conclude that the presence of uranium-238 in the Solar System implies a maximum age of about 4.5 billion years for its postulated consolidation. This figure is further refined by analyzing the uranium-235:uranium-238 ratio, which implies a maximum age of about 5 billion years.
Using the same method of analyzing parent:daughter ratios, paying attention to cases where daughter isotopes are found and parent isotopes are clearly absent, a minimum age can be obtained for the consolidation of the Solar System as proposed by the scientific community. For example, samarium-146, with a half-life of about 100 million years, is not found in naturally occurring deposits. However, its stable daughter product, neodymium-142, is found there. A 10 half-life calculation would therefore set a minimum age for consolidation of about one billion years. Thus, this process brings us to the interesting conclusion that the radiometric age of the planets, moons, and meteorites of our Solar System may range between one and five billion years.
What are the implications of such an ancient Solar System? How does this impact our view of the Creator? First, it is clear from Scripture that God is Creator of all things and, since He is God, i.e., eternal, the timing for the creation of matter does not really affect our understanding of His nature. It does have an impact on our understanding of the first two verses of Genesis which state:

In the beginning God created the heavens and the earth. Now the earth was formless and empty, darkness was over the surface of the deep, and the Spirit of God was hovering over the waters (NIV).

Some people believe that "In the beginning" refers to the first day of creation week and they conclude that the entire universe was created very recently. Others believe that the first day of creation week is not actually referred to until Genesis 1, verses 3-5:

And God said, "Let there be light," and there was light. God saw that the light was good, and he separated the light from the darkness. God called the light "day," and the darkness he called "night." And there was evening and there was morning — the first day (NIV).

Either position can be supported from Scripture. What we know and understand at present about isotopes in our Solar System suggest that the inorganic material is old. New information and new interpretations may alter this conclusion in the future. An awareness of these options helps Christians working in the sciences to develop concepts and models about our origins.